NASA MEMO 2-23-59E

MEMO 2-23-59E

NASA
MEMORANDUM

A NUMERICAL METHOD FOR OBTAINING MONOENERGETIC
NEUTRON FLUX DISTRIBUTIONS AND TRANSMISSIONS
IN MULTIPLE-REGION SLABS
By Harold Schneider

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON
February 1959




-4

[



E-170

CY-1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-23-59E

A NUMERICAL METHOD FOR OBTAINING MONCENERGETIC NEUTRON FLUX
DISTRIBUTIONS AND TRANSMISSIONS IN MULTIPLE-REGION SLABS

By Harold Schneider

SUMMARY

This method is investigated for semi-infinite multiple-slab config-
urations of arbitrary width, composition, and source distribution.
Isotropic scattering in the laboratory system is assumed.

Isotropic scattering implies that the fraction of neutrons scattered
in the i'® volume element or subregion that will make their next colli-
sion in the jth volume element or subregion is the same for all collislons.
These so-called "transfer probabilities" between subregions are calcu-
lated and used to obtain successive-collision densities from which the
flux and transmission probabilities directly follow.

For a thick slab with little or no absorption, a successive-
collisions technique proves impractical because an unreasonably large
number of collisions must be followed in order to obtain the flux. Here
the appropriate integral equation is converted into a set of linear
simultaneous algebraic equations that are solved for the average total
flux in each subregion.

When ordinary diffusion theory applies with satisfactory precision
in a portion of the multiple-slab configuration, the problem is solved
by ordinary diffusion theory, but the flux is plotted only in the region
of validity. The angular distribution of neutrons entering the remalning
portion 1s determined from the known diffusion flux and the remaining
reglon is solved by higher order theory.

Several procedures for applylng the numerical method are presented
and discussed. To illustrate the calculational procedure, a symmetrical
sleb in vacuum is worked by the numerical, Monte Carlo, and Pz spheri-
cal harmonics methods. In addition, an unsymmetrical double-slab problem
is solved by the numerical and Monte Carlo methods. The numerical
approach proved faster and more accurate in these exsmples. Adaptation
of the method to anisotropic scattering in slabs is indicated, although
no example 1s included in this paper.



INTRODUCTION

In order to solve a multiple-slab configuration of arbitrary width,
composition, and source distribution for the monoenergetic neutron flux
distribution and the number of transmissions, recourse to a number of
powerful methods is avallable. Wherever diffusion theory does not apply,
the spherical harmonics (ref. 1), Monte Carlo (ref. 2), and S, (ref. 3)
methods can be used.

The present discusslon concerns a numerical method that accurately
approximates the exact solution to many slat problems with & reasonable
amount of calculation. Isotropic scattering of monoenergetic neutrons
in the laboratory system 1s assumed. The numerical method is essentially
a procedure for solving the integral equaticn for the total flux given
in reference 1 (p. 78).

The numerical method was worked out in principle by DeMarcus and
Nelson (ref. 4) and was obtained by the author as a natural consequence
of working slab problems by Monte Carlo. Tkis method is relatively easy
to apply when at least some absorption is present and/or for thin slabs
where an appreclable leakage occurs - in otrer words, where tco many
collisions need not be followed in order to obtain the flux; these are
the conditions under which diffusion theory 1s generally inadequate.

For the other extreme, a thick slab with little or no absorption, a set
of simultaneous algebraic equations can be solved for the average total
flux in each subregion. When the diffusion-theory solution 1s known to
apply with satisfactory precision in a portion of the slab array, this
information can be utilized to great advantage in simplifying the numeri-
cal calculation. Also, it proves feasible in a number of cases to treat
a multiple-slab conflguration as essentially a single-slab problem with
the resulting simplification.

For purposes of illustration, a simple slab containing a centrally
located isotropic source plane and surrounded by vacuum was chosen. A
scattering probability of 8/10 per collisior and a slab half-width of
0. 781 mean free paths were also chosen.

The integrals for the probabilities of transmission with no colli-
sion and one collision were analytically formulated and evaluated. The
numerical-method flux and the number of neutrons transmitted with
exactly X collisions, XK = 0,1,2, . . . 19, were obtained and compared
with a Monte Carlo calculation. The numerical-method flux was also
compared with the Pz spherical harmonics aad Py diffusion-theory
fluxes.

Values of the slab half-width were successively changed to 1/5 and
5 total mean free paths, and the numerical-mzthod flux was obtained and
compared with diffusion theory for these cas=s.
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As a second example, a configuration in vacuum consisting of two
contiguous slabs of different absorption and scattering properties was
solved. An isotropic source plane was assumed at the left extreme
boundary. Distributed volume sources were avoided to facilitate the
Monte Carlo calculation. Twenty-eight collisions were followed in the
Monte Carlo and numerical successive-collisions treatment. The total
flux and the number of transmissions after exactly K collisions were
recorded and compared. The total flux was also obtained numerically by
solving the appropriate set of simultaneous algebraic equations discussed

in the text.

A,B,C, . . .
A,,B,3v=1,2,3,4

a,b,c, .« « »

ap,a1, » « « bo,by

F)F(X; U)

Fq(x)

G.
#%,,0:%,q,

sH
,23"1,2
i=1,2,3, » - .

3=1,2,3, « . .

SYMBOLS
regions or slabs A,B,C, . . .
arbitrary constants

widths in centimeters of slabs I, II, III, . . .
or slabs A,B,C, . . .

nuclear constants of region A and B (defined in
appendix F)

transport flux

coefficient of the zth Legendre polynomial of
in series expansion of transport flux

matrices defined by equations (3) and (12)

nunber of spherical zones of width du represent-
ing equal areas on a hemisphere of unit radius

matrices defined by equations (3), (12), and (13)

q-by-g- unit matrix

index denoting specific subregion (subslab) of
given slab (subregions are numbered consecutively
from left to right)

index denoting specific subregion (subslab) of
glven slab

number of collisions a neutron has suffered



T II)

P(x',x)dx

Pi,j or

P(x'i,xj)ij

Py (u)

subregion width in total mean free paths

distance in mean free peths from point lying any-
where In subregion 1 +to center of subregion J;
neutron is assumed to scatter in 1 and then
collide in j

distance in mean free peths from center of subregion
1 to center of subregion j, where

r= |j-i| = 1,2 . . .

distances in mean free yath units defined in connec-
tion with equation (AZ) and sketch (c), page 26

distance in mean free paths from boundary of one
subregion to center of another or conversely

matrices defined by equetions (5) and (3)

number of neutrons scattered per second from Kth
collision in subregior 1; in particular, ng(i)
represents primary volume source in 1

number of neutrons per square centimeter per second
arriving at X0 and teaving direction cosines in

dgp  about u

total number of neutron:s per second scattered in 1
for all collisions

total number of neutrons transmitted after one or
more collisions

number of neutrons transmitted in exactly K
collisions

matrix defined by equation (15)

transfer probability between unequal subregions as
measured in units of nean free path

kernel of equation (10), given by equation (A2)
probabllity that a neution will make its next colli-
sion in subregion J after being isotropically

scattered in subregior i

1th Legendre polynomial
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Pr or
P(L..,AL)
Po

PL(3
PTEX?;2§

-T T
K 'K

p(“'JH)d“

Pps r=1,2, « +

S(L')aL’

X5,X,

X0 ¥1,0 *R

Bv}‘rv)bv)
7\v"’(l’)"z

transfer probability between subregions of equal
width, as measured in units of total mean free
path (eq. (A8a)

probebility that next collision will oeccur in sub-
region in which neutron scattered

probability that a neutron will make its first
collision to left of source plane and be trans-
mitted through right-hand boundary without a
second collision

probability that a neutron scattered or born iso-
tropically at x' will be transmitted through a
boundary 1 mean free paths away with no inter-
vening collisions

probability of a source neutron being transmitted
through extreme left or right boundaries, respec-
tively, in exactly K collisions

given a neutron having direction cosine pu' and

undergoing scattering collision that may or may
not be isotropic; this expression represents
probability of finding neutron velocity in direc-
tion du about p after collision

transfer probability from source plane at boundary
of a subregilon to within r h ad jacent subregion

total nvmber of subregions in given conflguration
random number

integer 1,2,3, . . . equaling j-1i

source

source in infinitesimal strip of width 4L’
subregion width in centimeters

ith

x coordinates of centers of and jth subregions

x coordinates of interface and extreme left and
right boundaries, respectively

defined by equation (F3)



B( x)

Dirac delta function

probability that a neutron with direction cosine p
will pass through a :single subregion without
collision

O,h 7"

ecker delta =
Kronecker delta {l,h

1
1
error per collision resiulting from assumption that

all scattering collisions within a subregion take
place at center

total mean free path anc. scattering probability per
collision

equals cosine of ¢§

angle between § and the x axis

radial distance to next collision point
equals l/%

1-by-q matrix for flux in each subregion
average total flux in sibregion 1

unit vector 1n directior of neutron velocity

element of solid angle sbout

Subscripts and superscripts:

h

L

I,II

specific s01id angle in dlrection space
left extreme boundary

right extreme boundary

scattering

transmitted

specific slab, medium, cr region

ANALYSIS

The assumption of isotropic scattering in the laboratory system is

a good approximation for neutron collisions with heavy nucleil.

scattering implles that the direction of neutron travel after collision

Isotropic
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is unrelated to the direction of travel before collision. Thus, the
probability P; 3 that neutrons scattering in volume element 1 will
)

meke their next collision in volume elemenc J 1is the same for all
collisions. For a one-dimensional or semi-infinite slab, i and
refer to subslabs or subregions that hereafter will be taken to be equal
in width in a given slab. This implies that Pi,j = Pj,i' Furthermore,

Pi+l,j+l' This
means, for example, that Pl,S = P5,5 = P6,4 = P8,6’ and so forth. The

if these subregions are numbered consecutively, Pj j=
s

transfer probability, henceforth called P,., therefore depends on a

single index r and is characteristic of slab geometry. Thus, given
that a neutron is scattere = in any subregion, Py 1is the probability

that it will make its nex:t collision in the same svbregion, Py in
the adjacent subregion, P in the second adjacent subregion, and so
forth. The Pp's do not vary from collision to collision and can there-

fore be calculated once and used to obtain the (K+l)St collision density
distribution from the K*M. For a slab with g equal subregions, there
are q different transfer probabilities.

For problems involving spherical symmetry, the sphere would be
divided into q spherical shells of egual width. Here, however, the
transfer probability Py 3 from shell 1 to shell J 1is not equal to

Pl

that from j to i, P, ,. Also, P, . # P. .. Thus, there are q@

3,1 i,1 Jsd
different transfer probabilities as opposed to the g probabilities of
the slab case.

In cylindrical geometry there would also be q2 Ps j's between

2
concentric cylindrical shells. This paper considers cnly the slab case.

Single-Slab Analysis

Consider a typical slab of width "a" centimeters divided into g
subregions of equal width, numbered from left to right by the index 1.

Let A and Ay be the total and scattering mean free paths of the

given medium and let the width of each subregion be AL total mean free
paths. Furthermore, define nﬁ(i) o be the number of neutrons scat-
tered per second from the K™ collision in subregion 1. Then ng(i),
for example, represents the given initial volume source in i, and

ni(i) represents the number of first-collision scatterings in 1. If

AL has been chosen sufficiently small,

AX
AL = 5=

gﬂm



then the sources within each subregion can te lumped at its center with
negligible error (appendix A). The transfex Probability is then computed
from the center of the ith subregion to witrin the i+rth subregion, after
which the transferred neutrons are in turn lumped at the center of the
latter subregion.

The transfer probability P, 1is a function only of the distance

L, Dbetween the centers of the two subregions involved snd of the sub-

region width AL, all in units of total mear free path. Although

Lp=r1rAL, r = 1,2, . . ., (q-1), P, is dencted by P(L,,AL) as formu-

lated and evaluated in appendix A.

Initial and subsequent collision densities arising from distributed
isotropic volume sources. - The specified vclume sources are assumed to
be lumped into isotropic source planes located at the centers of the sub-
regions. After Pp,Pp, . . ., Pq-1 are calculated from equations (A8a)

and (A9), the number of (K+1)SU collision scattering hits in subregion i
may be obtained by summing the contributions to i from the previous or
KB collision in all of the subregions. Mataematically stated,

i-1 q
ne (1) = %— Z ng(1-a)P + z; nIS((CL)Pa_L] i=1,2, « « ., q(1)
SLa=1 a=

where the first summation represents the inpat into 1 from subregions
to the left of i and the second summation represents the input from
subregions to the right of i, including 1 itself. The guantity

NN, gives the fraction of the (K+1)5% collision hits that scatter.
Setting K = O in eguation (1) gives the fisst-collision distribution
due to the distributed primary volume sources nS(i). Successive-
collision distributions are obtained by succ2ssively increasing K by
1 unit and evaluating ng (i) from equatio:r (1). The total number of

scattering hits for all collisions is given by

n®(1) = 3 mg(1) (2)
K=1

A sufficient number of collisions are follow:d until n®(i) does not
change appreciably.

First-collision distribution due to isozropic source plane at inter-
face between subregions. - If the source plane is located at an inter-
face between subregions, another set of transfer probabilities P, can
be calculated from equation (A8) as before, Hut with

OLT-H
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L' = (r - lﬁcm. r=1,2, « . . (A8Y)

instead of

L' = r AL r

]
}—l
-
Do
-
.
.

(A8a)

Thus, p represents the fraction of the source-plane neutrons that will
collide in the first adjacent subregion, Po in the second adjacent sub-

region, p in the third, and so forth. Once the initial-collision dis-
» F3 ’

tribution has been determined, successive-collision distributions follow
from equation (1).

If a reasonable amount of absorption is present and/or the slab is
sufficiently thin so that a large number of collislons are not required
in order for the number of scattering hits to converge, then equation
(2) may be utilized for machine calculation. For cases where conver-
gence 1s slow, a collision-by-collision technique 1s impractical, so a
matrix treatment, suggested in reference 4, is used.

Matrix formulation of equation (1l). - Define matrices H, G, and

N as

P P, P P )
0 1 "2 Tt T ‘-1
1
Pl PO Pl P2 —_— == =a :-__
1
] 1
1 1
-- P, P, Py P P, -- ----
1 1 ]
- _A_ = 1 ] 1
H= ')\ G= %’ == == Pz Pl PO Pl Pz —_——— >‘(5)
A |
-- -- -- P; P Py P P
1 1 1 1
T T —I- _l— ?2 Pl PO Pl
1 1 ] i 1
Pq-—l - - e - Pz Pl PO
- -
S
N_(s{’ = [nE(l), n;(Z), R nK(Q)]
K = 0,1,2, e ® o J
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Equation (1) can then be written in matrix form as

N;+l = Néﬁ K=0,1,2, + « . (4)

The symbol NS defines the 1-by-q matrix for the given original volume
sources. The matrix to be found is N°, a 1-by-qg matrix whose elements

n®(i) represent the total number of scattering hits in subregion 1 for
all collisions (eq. (2)).
Matrix N°= [n®(1), n®(2), . . ., n°(q)]

From equation (4) it follows that

8 aSoK+1
NK+l - NOH
or
NS = Z NSK+1=§SE
e Yot = 1

where I 1is a g-by-q-unit matrix. Therefore,

N°(I-H) = NoH (5)

The quantities H, I-H, and NS are known matrices given by equation
(3). Hence, equation (5) represents q linzar simultaneous algebraic

equations for the unknown nS(i). If nS(i) has been found, the average
total flux in each subregion is computed as

o(1) = m¥(1) 22 1=12, ..., 4q (6)

where AX 1is the wildth of subregion i in zentimeters. In some cases
it will be more economical to utilize equatisn (5) to obtain the con-
verged flux, while in others a collision-by-:0llision technique as
implied by equation (4) will be preferable.

Integral equation for total flux. - It ~ill now be shown that equa-
tion [5) corresponds to numerically solving an integral equation for the
total flux.

Denote the x coordinate of the center of the ith subregion in

which the neutron scatters by Xi. Let Xj e the x coordinate of the

center of the jth subregion to which the neusrons are transferred for

their next collision. Replace the transfer orobabilities in equation (1)

N 7-w
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by their equivalent P(Xj,X,)AX; and replace ng,1(1) by n;Jrl(xj)AxJ..

Summing both sides of equation (1) over-all collisions gives

- q
s A S rot N ot '
I;) I]IQ-l(th)ij = Ns I:i§=l: no(X)ax; P(X ,XJ.)AX‘j +

fle 2 Ry P(X'i;XJ)AXJ] ()

Equation (7) states that the total scattering rate for all colli-
sions in AXj is the number of first-collision scatterings plus the
number of subsequent scatterings as represented by the last term. From
equations (2) and (6), there follows, after dividing through by
AXj = AXJ,

q
3(X:) = A nS(X1)AX P(XY,X5) + & o(x})AXy P(X],X (8
(%5) Z)lou <1J)+x3§()i 5) )

With the subseript 1 and/or J affixed to nS, P, and ¢, equation
(8) becomes

q 9
s A .
0y = A El ng, 1Py, 5 + o 12—1 ;P 3 J=1,2, .« « «, a (9)

Equation (9) represents ¢q linear simultaneous algebraic equations. In
matrix form, it is ldentically equation (5) with N° replaced by %Z 0.

Allowing AX{ - O 1in equation (8) gives the Fredholm-type integral
equation for the total flux (ref. 1):

o(x) = xfxt nd(x') P(x',x)dx’ +%L o(x') P(x',x)dx'  (10)

S

The kernel P(x',x) is given by equation (A2). The successive-collisions
technique of equation (4) therefore corresponds to solving equation (10).
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Multiple-Slab Analysis

Isotropic
Vacuum source plane Vacuum
/ Medium I (AT,2]) Madium 1T (AIT,AIT)
e | | | I | |
I | l l | | |
N N Y D
b 9 Subregions | | | qu Subregions| I
[ T T | l | : | |
I e 5% ot BN BRI Lt &ge— |
R T Y T A N | | | | | |
i= |1 ersyarsiel7]alofq|arilael-mmd coecleacco| g
N | | | I I !
X1, X0 xR
‘__"qlALI mean free paths——’F_———-quLII mean free paths

Sketch (a). - Multiple-slab configuration.

Angulsr distribution of neutrons. - Sketch (a) displays two contig-
uous slabs. Additional slabs need not be coisidered because all the
numerical techniques required are illustratel by this double-slab problem.
An isotropic source plane is assumed at the Interface XQe

The neutron flux is obtained in the first slab by following neutrons
from collision to collision within this slab by means of equation {4) or
by solving the qy simultaneous algebraic ejuatlons represented by
equation (5). The second slab is entered by means of an angular distri-
bution n(xo,p)dp that is determined from tie known flux. The angular
distribution 1s derived as equation (B2) and represents the number of
neutrons per square centimeter per second ar:iving at xo and having
direction cosines lying in du about u.

The isotropic source plane and n(xo,u)dp determine the first-
collision distribution in the second slab. Jeutrons are followed therein
until its flux converges. A new angular dis:ribution is computed for
reentry into the first slab. These neutrons are followed, giving an
augmented flux that represents the combined :ffect of the original neu-
trons plus those backscattered once from the second slab. The latter
slab 1s entered a second time, and so forth. Thus, neutrons are followed
in one slab at a time, with the other being =ntered by means of the
angular distribution. This procedure is not feasible when an excessive
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number of interface crossings is required to achieve a converged flux
everywhere. This difficulty does not arise if elther slab is a reason-
able absorber.

The angular distribution represents an anisotrople source plane at
the interface. The first-collision distribution of these neutrons is
computed by dividing the angulsr hemispherical region - to the right of
the interface, for example - into a grld of g solid angles. The proper
number of neutrons 1is sent into each solid angle by means of n(Xo,p)du.
The expcnential attenuation law gives the fraction colliding in each
subregion of the second slab for direction cosine p. Summing over all
s0lid angles yields the first-collision distribution as expressed by
equation (BS5). Once this is known, subsequent collision distributions
follow from equation (4), or the final distribution follows from equa-
tion (5) with N 1in the right-hand term.

Numerical treatment of anigotropic scattering in slabs. - Aniso-
tropic scattering in slabs can be treated in an analogous manner by:

(1) Assuming the anisotropic volume sources for the next collision
to be lumped into a source plane at the center of a subregion.

(2) Utilizing an expression p(p',u)dp which gives the probabllity
that a neutron having direction cosine p' will be found in du about
u  after undergoing a scattering collision.

(3) Applying the technique of equations (BS) and (B6) to each source
plane to determine the number of neutrons that will maeke their next
collision in each of the subregions for a glven .

(4) Repeating steps (1), (2), and (3) for the other u's and pro-
ceeding to the next collision. The procedure is an order of magnitude
more involved here because the angular distribution must be recorded at
the center of each subregion in following successive collisions, whereas
it was unnecessary to do this for the isotropic case.

Reduction of multiple-slab to single-slab configuration. - When the
number of interface crossings required becomes excessive, the angular-
distribution approach becomes impractical. Noting that the transfer
probabilities (eq. (A8)) in a given slab are functions only of the sub-
region width AL, one attempts to choose ALy = ALyy. The transfer
probabilities of both slabs become identical, and a single set of trans-
fer probabilities applies throughout. A two-slab problem has then been
reduced to a single-slab problem with the resulting simplification:

The relation ALy = ALyt implies that

a b

g N gt
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or

Ao
q, = __.>\II Z)u 4,9 = 1,2,3, « . . (11)

where a and b are the respective widths 11 centimeters of slabs I
and II, A the total mean free path, and 4, the number of subregions
in slab I.

Equation (11) can be rigorously satisfied only when the given numer-
ical quantity in parentheses is an integer. OJtherwise, a set of values
should be sought for 4, and q, satisfying (11) such that:

(l) Rounding off to the nearest integers alters the given physical
dimensions of the configuration a negligible amount.

(2) The values of q; eand g, are not :xcessively large for cal-
culation purposes.

(3) The values of Q. and q, ere sufficiently large that the sub-
regions have negligible lumping error.

When these three crilteria can be met, it 1s perhaps best to choose
the number of subregions in each slab accordiig to equation (11). Thus,
a multiple-slab problem can be worked as a sliigle slab. However, the
colliding neutrons must be weighted by the scattering probability X/KS
of the medium in which they collide. Equatioi (1) must then be modified
to read:

Ifi=1 q -
ng, (1) = (%;) [Z n8(i-a)P_ + > ng(a)P,_, i=1,2,...,q
a=1 a=1 -
AT -1 q
n;_’_l(i) = (7\.;) Z n}i(i_a)Pa’ + E né(a)Pa_!] i= q’l+l’ql+2’ e vey, G
=1 a=1 a=dq; +q

Define matrix Gy o to be identical to matrix G of equation (3)

4

in the first gy columns with zero elements [n the remalning columns.

Also define Gy a5 tc be ldentical to G in the last ds columns with
2

zero elements in the others. Defining matric:s Hl 0 and HO o 8s
2 b

OLT-H
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I
= (L
1,0 % (xs %q, o
b4
12
L o (12)
0}2 - (-)\S) O)q.z
equation (4) becomes
S S - S
Mgy = Ng(Hy o + Hy p) = Ny o
K=0,1,2, ... (13)

w = [m20), 52(2), « - -, n2()

Following the same procedure used in deriving equation (5) gives

<] _ NS
N°(T - Hl)z) = NOHl’z (14)

Equation (13) is utilized in a collision-by-collision procedure,
whereas equation (14) gives n®(i) directly when the g simultaneous
algebraic equations represented by (14) are solved.

Transfer probabilities between unequal subregions lying in differ-
ent media. - When it is impractical to use the angular distribution to

pass from one slab into the other or to make the AL's equal, transfer

probabilities between unequal subregions lying in different medla can be
used. These transfer probabilities eliminate the need for the angular
distribution but require many more computer storage locatlons. They are
calculated from equation (All).

Referring to sketch (a), Pglg is defined as the transfer probabil-

ity between subregions 1 and j lying exclusively in medium I and

P(Z) as the transfer probability for 1 and j 1lying exclusively in
i,J
medium II. If i 1lies in medium I and j in medium II or conversely,

then Lhe transfer probability is written as P; j and Pj,i’
respectively. ’
A matrix P is defined as
(JL)I P(lz |(JL)II
}\S i,d | >\S 1sd
l
“by- -by- |
o q by 9 matrix ‘ql y-a, matrix _ ﬁ_L?_ (15)
= ———— e T | ———————— = |
A\ T . |\ 1T (2) c D
Qﬂ) J,1 | 75) L, J
I
qz-by-q1 matrix |q2-by-q2 matrix
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Since Pﬁlg and szg are the usual transfer probebilities between sub-
J

J
regions lying in the same medium, they can be denoted by Pil) and
P£2), respectively, to be consistent with the previous notation. If
there are q = 6 subregions in medium I, for example, and qQ = 4

subregions in medium II (g = 4 + qy = 10}, then equation (15) reads

r ¢ 7 B 7

Péi) Pﬁl) Pél) Pél) Pﬁl) Pgl) P1,7 1,8 F1,9 PF110
1

Pg ) Pél) Pgl) Pgl) Pél) P£l) Po7 Pas Paig Pooao

Pél) P&l) Pél) P&l) Pgl) Pél)

y (X)II Pz7 Pz,8 P39 Pz 10

%l) PSJ ﬂ}) PSJ %}) PEJ Pe,7 Pa,s Pao Pa 10

Pz(;l) P:(,)l) Pél) pgl) P(gl) P(ll) P5,7 PS,B P5,9 PS,lO

_Pél) Pil) Pél) Pél) Pgl) Pél) | | F6,7 Fe,8 Ts,9 Te,10]

_P7,1 Pre Poz Fra Prs P7,e-— régz) P§2) sz) sz) ]
. () Ps,1 Fe,z Ts,s Pss a5 Taye ; ( )II sz) PéZ) Piz) Péz)
| (%S) Fo,1 Po,2 Pgz Pga Fg5 Py ° sz) sz) sz) Piz)

p(2) p(2) p(2) p2)

F10,1 Fi0,2 Fi0,35 Fr0,4 Fr0,5 Fio,6 2 0" ]

where the double-subscript elements are the transfer probabillities be-
tween unequal subregions. None of the elements in the B and C
matrices are equal.

With matrices N; and N° defined as tefore,

NE+l = NE P (18)

NS(I - P) = Ng P (17)

Matrix I is a g-by-gq-unit matrix. Eguation (16) is used to fol-
low neutrons from collision to collision in the configuration when
ALt # AL7p. When convergence of (16) is slow, equation (17), which
represents q simultaneous algebraic equaticns for the total number of
scattering hits in each subregion, is used.

Combined application of diffusion theory and numerical method. -
Assume, for example, a thick slab having an isotropic source plane at the
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left extreme boundary and located in vacuum. Ordinary diffusion theory
applies accurately in the region of about three or more mean free paths
from the source. Denote this as region II. The entire slab is solved
by ordinary diffusion theory. The resulting flux, however, is plotted
only in region II because an exact transport-theory calculation would
yield substantially the same curve only in this region. This leaves the
region from the source plane up to three mean free paths to be worked by
higher order theory.

The flux in region II includes neutrons that have crossed and re-
crossed the interface any number of times. The angular distribution
into region I arises from this flux and is calculated by equation (B3).
It therefore represents the final angular distribution and is consequently
calculated only once. Thereafter, region II is treated as a vacuum in
following the neutrons in region I.

The first-collision distribution in region I, due to the angular
distribution at the interface, is obtained by equation (B6). To this is
M®dmewmﬂmumfmmmewmmﬂswmemwethlﬁtMMm
ary. By knowing the first-collision distribution, successive-collision
densities are calculated in the usual manner, utilizing the transfer
probabilities of region I. The resultant numerical flux completes the
distribution for the entire slab.

Calculation of various quantities of interest in a slab calcula-
tion. - From the total number of scattering hits nS(i) in each subregion
of the given slab, the average total flux is computed by equation (8).

The total sbsorption rate in each subregion and consequently in the

entire slab is computed by
A q
> n®(1) (18)
7\C:apt =1

Since the number of neutrons per second entering the given slab -
that is, the production - is known, then

Total leakage = Production - Absorption

where the absorption term is given by expression (18).

The total number of neutrons nT +transmitted outward through the
extreme left or right boundaries from one or more collisions within the
slab is
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q
E::l_ ns(i)PT(Zi) = n%
(19)

q
Z‘l ns(i)PT(Zq+l_i) = n%
1=

where 1. = (? - %)AL and pT(z) 1s defined by equation (A6).

The angular distributlon of these neutrons is (appendix B):

o~ o, /el )
n(XLJIHhI)dP = Z n (i)e % dp Mn <0
i=1 >
q
S
n(xg, |ky|)dn = Z n®(1)e ~Gr-iM1Th 1 du hy > 0
i=1

where I“h' is given by equation (Bl1).

If neufrons have been followed from collision to collision according
to equation (4), né(i) is known for each collision. The number of neu-
trons transmitted after exactly K collisiocr.s follows by replacing

n®(1) in equations (19) by né(i) and nT b gg.

Boundary conditions at extreme boundary of a cell. - Consider an
infinite repetitive-slab array consisting of identiecal units called
cells. At the extreme boundary of a cell, tte leakage from the cell in
any direction is compensated by leakage into the cell in the opposite
direction. This necessitates determining the angular distribution at
the extreme boundaries from the flux within (egs. (B2) and (B3)) and then
reflecting the angular distribution. The uncollided source neutrons must
be added to n(xp,|uy|)dn to complete the argular distribution. The

first-ccllision distribution of these neutrors is then calculated by
applyling the technique of equation (B5), and so forth.
NUMERICAIL EXAMPLES
Description of Slabs Studied
To illustrate the preceding development, the slab of sketch (a) was

chosen with a = b = 1 centimeter. The totel mean free path and the
scattering probability per collision were respectively taken as

OLT-H
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A= At = 0.78125 and (W)L = (M) = 8/10. Each slab was divided
into ten equal subregions (ql = q, = 10) giving AL, = AL, = 0.1280. A

unit isotropic source plane was chosen at the interface Xge

In the general case where Alq % Alo, this configuration might be
treated as a two-slab problem (each half separately) by using the angular
distribution at x5 to pass from one slab into the other. However, in
the present case, there 1s the option of a single-slab treatment, which
is, of course, much simpler. Both procedures were adopted for this
example and gave identical results as antieipated. For the double-slab
case a grid of 50 solid angles was used to pass from one slab into the
other. As discussed in the text, transfer probabilities between sub-
regions of unequal wldth can always be used as an alternative to the
angular-distribution approach.

Let P% and PﬁT be defined as the respective probabllities that
a source neutron will be transmitted through the right or left boundaries
after exactly K collisions. ZFor example, Pg would be the probability
of a transmission through the right boundary directly from the source.
From symmetry,

T -T
BK = PK

The multiple integrals for PT and PE

0 are formulated in appendix C.

By employing the previously given values of N and A, Pg and
P% were evaluated as Pg = 50.0 and P% = 47.07 per thousand source
neutrons. Part of the contribution to P% conslsts of neutrons that
suffer the single scattering collision to the left of the source _plane.
The fraction of these that escape through the right boundary 1 was
evaluated as 12.3 per thousand source neutrons. In addition to the
neutron flux, these values were compared with the results of the numeri-
cal method.

The bleck diagram for the numerical analysis, using the single-slab
treatment, is given as appendix D. Twenty collislons proved sufficient
to give a converged flux.

The neutron flux and transmission probabilities P%R, PE, PﬁT were

obtained by a Monte Carlo calculation (appendix E) considering 10,700
histories for up to 20 collisions each, The results were compared with
those of the numerical method. A Pz spherical harmonies solution
(appendix F) and a P, diffusion-theory calculation were also performed
for the total flux and were compared with the other methods.



20

The slab half-thickness was successlvely changed to 1/5 and 5 total
mean free paths with the same values of A end X/%S. The numerical-

method flux was compared with diffusion theory for these cases.

As a second example, the configuration cf sketch (a) was chosen,
but with

T 11
I_ AY -8 I _ A _
A=, (%s) = 2, T - s, (%s> = 1.0

and with the source plane at X1 instead of Xp- The widths of slabs

I and IT were taken as 2.0 and 2.0177 centimeters, respectively. By
choosing q = 34 subregions in slab I and q = 10 subregions in slab
II, equation (11) is satisfied. Thus, ALy = ALyy = 0.058824. There are,
of course, many other integral pairs q; and g, that could have been

chosen to achieve the equality of the AL's.

The set of transfer probabilities Py, Fp, Pp, - «» ., Pyq was cal-
culated from equation (A8a). The additional set Dy, Dy, » » +, Dyy

was calculated from (A8b) in order to determine the first-collision dis-
tribution of the neutrons emanating from the source plane at X;. The
successive-collisions technique of equation (13) was applied for 28
collisions and ylelded converged results. The number of neutrons trans-
mitted after exactly K collisions past X; and Xg was recorded in
the process.

For comparison, a Monte Carloc calculaticn was performed for the
total flux and the number of transmissions. Up to 28 collisions were
allowed, and 25,000 neutron histories were fcllowed.

Finally, the flux was obtained by solving the 44 simultaneous equa-
tions represented by equation (14).

Results

The results of the numerical and Monte Carlo methods for the symmet-
rical slab of sketch (a) are contained in tatles I and II. Table I also
includes results of the Pz approximation. The fluxes are plotted in
figures 1 and 2. Figure 2 includes a Py arproximation for comparison
with PB'

Against the analytic values of Pg = 50.0, P? = 47.07, and

P%R = 12.3 per thousand source neutrons, Morte Carlo yielded averaged

values of 50.0, 47.81, and 11.97 per thousand as compared with 49.6,
47.03, and 12.18 by the numerical method. Tre Monte Carlo flux and
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transmissions sometimes suffer an appreciable deviation from symmetry in
each half of the slab (table II), but the averaged values are in good
agreement with those obtained by the numerical method, which, of course,
suffers no deviations from symmetry. The total leakage was 0.43406,

0. 43556, and 0.43598 per source neutron per square centimeter per second
by the Monte Carlo, numerical, and Pz methods. The total absorptions,
satisfying neutron conservation within 0.04 percent, were 0.56569,
0.56402, and 0.56402, respectively.

In addition to the P; and Pz fluxes, figure 2 contains the re-
sults of the numerical-method solution utilizing 100 subregions instead
of 20, as presented in figure 1. The finer mesh was chosen to test the
accuracy of lumping the scattered neutrons at the center of each sub-
region and to acquire a more detailed variation of flux than appears in
figure 1. When averaged over each subregion of figure 1, the numerical
flux differs by a small fraction of a percent from the 20-subdivision
case, implying a negligible lumping error. The same is true for the

EE'S’ K=0,1, . . ., 19. Thus, for practical purposes the 100-subregion

case represents a precise solution of integral equation (lO) and hence

the transport equation, in the sense that further subdivisions would yield
negligible changes and that the numerical method has exactly treated the
angular dependence.

Utilizing the same total and scattering mean free paths as before,
figures 3 and 4 contain numerical-method flux plots for slabs of 1/5 and
5 total mean free paths half-thickness, respectively, from the source -
plane to either boundary. The diffusion-theory flux is plotted for
comparison.

Figure 3 shows the agreement between the numerical method and 4if-
fusion theory to be poor everywhere, whereas in figure 4 the agreement

is excellent beyond 2% mean free paths from the source.

A total of 10,700 Monte Carlo neutron histories required about 2
hours of IBM 653 machine operating time as compared with 3 minutes for
the numerical method. Sketch (a), worked as a double-slab problem,
required about 4 minutes per slab per interface crossing. Twenty colli-
sions were followed within each slab. Thirty minutes machine time corre-
sponding to eight interface crossings yielded results identical to those
listed in table T.

The numerical and Monte Carlo results for the second example (two-
region unsymmetrical slab) are listed respectively in tables III and IV,
and the fluxes are plotted in figure 5. Table IITI shows that 28 colli-
sions proved sufficient to obtain the neutron flux accurate to the fourth
decimal place in comparison with the solution of the 44 simultaneous
equations for the neutron flux.
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Figure 5 shows that the numerical flux plots into a smooth curve
about which the Monte Carlo solution oscillats:s. The reasonably close
agreement implies a check on the correctness >f the numerical solution.
Identical remarks apply to the transmission probabilities in tables ITI
and IV.

The numerical-method leakage through the X1, and XR Dboundaries
was 0.68969 and 0.061656 per source neutron t give a total-leakage
probability of 0.75135 per source neutron. Tie respective Monte Carlo
values are 0.694384, 0.060358, and 0.75474. 'The total absorption per
source neutron is 0.248628 by the numerical method and 0. 245178 by the
Monte Carlo calculation and thus checks neutron conservation.

OLT-H

Following 28 successive collisions numerically required sbout 30
minutes machine operating time as compared with 15 minutes machine time
in solving the 44 simultaneous equations. Twenty-five thousand Monte
Carlo histories required about 10 hours.

Discussion of Results

The 100-subregion case of the slab of sketch (a), as opposed to the
20-subregion case, yielded virtually identical results for all the flux
and transmission values. From this, it is corecluded that the error
introduced by lumping the scattered neutrons zt the center of a subregion
was negligible for this problem.

Anticipated qualitative features are confirmed in filgures 2, 3, and
4. The readily obtained numerical result is in excellent agreement with
Pz beyond 1 mean free path from the source and with diffusion theory
beyond 2.5 mean free paths. From the source to about 1/5 of a mean free
path, the agreement of P- and P1 with the numerical method is poor
and becomes worse, in general, as the source plane is approached. In
this vieinity, a proper treatment by transport theory requires a large
number of spherical harmonic terms to account for the large forward bias
in the net neutron current.

The quantity 1/A=Z was chosen such that P%‘ = 50.0/1000, and there-

fore 3 = 1.280. This value of % was obtalinzd by visual interpolation
from a set of curves given in reference 5.

The simultaneous-equation approach of equition (14) proved best in
the unsymmetrical-slab case or second example. This solution represents
the flux that would be obtained by following a1 infinite number of
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successive collisions according to equation (13).
fore, represents the solution to the problem.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, December 11, 1958
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This approach, there-
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APPENDIX A

CALCULATION OF TRANSFER PROBABILITIES AND LUMPING ERROR

A neutron is scattered or born isotropically at x' in dx' in
sketeh (b). Denote by PT(x',x) the probability that it will pass
directly through the infinite plane at x vithout suffering a collision.

Sketch (t)
The probability that it scatters with <lrection cosine p in du
is % du (appendix E). The probabllity of tiaversing a distance p with-

out a collision is e’p/k. Summing over-al.. angles to the right of the
source gives PL(x',x).

1
PT(X',X) = % JE dp e-(x-x") /N x> x' (A1)

The probability that the next collision occurs in dx about x is

P(x',x)dx = lim PL(x',x) - PL(x' x+Ax)
Ax =0

1
= lim %’f dp e-(x-x’ . (1 - e"AX/Nl)
ax»0 © 70

1 :
= .L d -(X)X )/N—L g-_s
Zjo. e NL

0} T-"
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- - 1
By letting +t = XX and 1= 5———5—, this expression becomes

Nt A
dx B et
P(x',x)dx = -2—7\-[ — dt x > x' (A2)
(x-x")/A
and (Al) becomes
pT(1) = e g (A3)
2 tz
1

Equation (A2) represents the kernel of integral equation (10) when
x > x' and 1s the well-known exponential integral. If x < x', the only
change is to replace x - x' Dby x' - x. The symbol 1 1is the number
of mean free paths in |x - x'| centimeters.

Integrating by parts gives

PT(1) = f £ at (A4)

o0 - -]
-t -t
f £ dt = [ E : F ]dt +f £— dt
1 15

The value of the second term is given in Jahnke and Embde &s
1.92x1078. Integrating this series term by term gives

= n,.n = n+l.n
Il=1.92x10'8+1n15+2ﬁ‘—1)—15—-1n1+zﬁ—ir)l—,;—l—— (A5)
n=1 n=1

and

IH

I

ct

nin

The first three terms are lumped into a single constant. The result is
-0.57721560. Equation (A4) becomes

1 n+l. n+l
PT(l) = 0.5 - 0.21139220 1 + 5 1 1n 1 - ) :E: L——l————___ (A6)

(n+l)!n

This expression is the probability that a neutron scattered or born
isotropically at x' is transmitted through a boundary 1 mean free
paths away with no intervening collisions.
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XTI sketeh (o) X

By referring to sketch (c), the transfeor probability between the
two shaded subregions is computed as follows:

All neutrons scattered in AL' are luaped at x' 1inside AL'; x'
is ordinarily chosen at the center of AL'. This is not an essential
choice, but it is a convenient cne. The subregions have been teken suf-
ficiently small so that the lumping error can be neglected.

The quantity L' is the distance in m2an free paths from the source
plane to the center of AL; L, 1is the distince from the center of AL’
to the center of AL. The probability that a neutron scattered in AL’
will make its next collision anywhere in AL 1is given by

P(1',1) = PL(1') - 2T(2) (A7)

But 1' =L' -4 and 1-1'+ L. Substituting from equation (A6),
(A7) becomes

P(L',AL) = 0.21139220 AL+%< - %)m( - %—) -%—(L' + @> ln(L‘ +§‘E) +

12 e [ RN T i B

&

P(L',AL) is the transfer probability from a source plane into a subregion
of width AL whose center lies L' mean free paths away from the source
plane.

The source plane is ordinarily taken at the center of a subregion.
Then,

N T-W
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L' = L.=r AL
r=1,2 .. ., {(q-1) (ABa)
P(L,,AL) = Py

If a source plane exists at the boundary of a subregion,

= = 1
ve e (ro2)a

?'r)AI") = P

(A8D)

The probability that a neutron will make its next collision in the
subregion in which it scattered is given as

ALY AL AL N 1 n+l( )n+l
__) = 0.21139220 AL - = 1n 5 + :E; %EI%Y‘H

il
P.=1 - 2P
2 =
(a9)

0

Transfer Probabilities Between Unequal Subregions

Suppose that AL' = ALt lies in medium I and AL = ALII lies in
medium II. It can be proven that, for slab geometry, the transfer proba-
bility still depends on the total distance in mean free paths from the
source plane in ALy to the collision center of ALry. From sketch (d4),

Interface Slab II

I

Sketch (4)
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Il

I, ,II
L' = 15 + 1

1
[

(rl - %—)ALI ry,Ts, = 1,2, « . . (A10)
1T _ -
= (rz 2>ALII

Equation (A8) now reads:

AL AL
- 1{I IT _ =21 ( I I1I I1) _
P(ALp,ALp) = 0.21139220 ALpp + 3 (11, + 1l )ln L )

AL AL
1151 II II I [I I
5 (lr + 15 4——7?—)1n(1r + 1.7+ ———l) +

® n+l n+1l

1 (-1)+1 (ZI II ALII) (I II ALII) ]

= + 1 + —== -\l + 1 - —= 11

2 ; (n+1)!n {\'F r 2 r r 2 (Al1)
where 1% and 1%1 are given by (Al10). Eguation (All) is used to calcu-
late transfer probabilities between unequal sibregilons.

Lumping Error

Again, in sketch (c) the lumping error per collision e arises
because neutrons scattered anywhere in AL' are lumped at a source plane
at the center of AL'. If S(L')dL' is the :rue source distribution
inside AL', where dL' is of infinitesimal -ridth, the lumping error for
the transfer probability P(Ly,AL) is

Lr*‘%%
A SETEB(LY,AL) AL

L., - &=

€ = r_ 2 ~ ~— - P(L,,AL) (A12)
Ly +
S(L')dr’

L - 4L
r 2

Equation (Al2) implies that if all neutrons inside AL' were actu-
ally scattered from a source plane at its cen-er, the lumping error for
P(L,,AL) would be zero. This is verified by substituting

S(L') = 88(L"' - L,) into (Al2).

The maximum possible lumping error that could arise would occur if

all neutrons were scattered in AL' at eithe:r of the two boundaries of
AL'. Then,

OLT-H
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s(L'")aL' = SS(L' - L, - %—L-)dl.‘ (for ey)
or
' v [ AL '
S(L')dL' = S&(L Ly +'7T)dL (for ep)
Then
e, = ‘P(Lr ¥ %L—,AL) - P(LI.,AL)I
e, = ‘P(Lr - %L—,AL) - P(Lr,AL)(

For Po, for example, the maximum possible error is

P D= B} _ AL (-1)
€ax = Po- P1= €2+ (A9) - eq. (ABD)=571n 2 + z; VT e
n=

n+l(AL)n+l/ 1 l)

In actual practice the error will be considerably smaller than this
because neutrons will be distributed throughout AL'.

Insight into the magnitude of the lumping error may be gained by
writing S(L') = ¢L' + n in equation (Al2). This accurately approxi-
mates the correct but unspecified source distribution in AL', provided
AL' is small. The gquantity 17 1s chosen so as to normalize the source
distribution in AL', while ¢ remains an unknown parameter unless the
source distribution is specified. The integration in (A1l2) can then be
performed with the result being indicated as f£(L,AL,{). Thus,

E(CJLI'}AL) = f(Lr,AL,g) = P(LEJAL)

where Ly has been written for L, in the P(Lr,AL) term of equation
(Al2). By setting e = O and solving this complicated equation for Ly,
the exact location within AL' where all the scattered neutrons can be
lumped with zerc error is obtained for a given ¢, L, and AL. This
point will rarely coincide with the center.
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APPENDIX B

ANGUIAR DISTRIBUTION AND FIRST-COLLISION DISTRIBUTION
DUE TO AN ANISOTROPIC SOUECE PLANE

Angular Distributicn

Slab II
g S
8n
//
1= 1 3 a, -
_ “eos™H |
-1 —¥
/////‘<:P
L
Iz >
\NTnterfac:
x b %
nS(1)f . nS?B)nS?ql
.t. %o
Sketch (e)

The angular distribution at the interface of neutrons entering slab
II from slab I 1s computed from the known nunber of scattering hits
nS(1i) in slab I.

_’
In sketch (e), Q, is a unit vector in the direction of the neutron

velocity that is specified{Ey'the cosine of the angle between 3h and
the x axis; that is, yp = Qh-i. The vectoz 3h can be considered as

the radius vector of a unit sphere about the point P as its center.
The surface of the hemisphere to the right of the interface is

divided into a grid of g strips of equal areas formed by rotating ﬁh
about the x axis for h= 1,2, . . ., g« Then,

du = g [tn| = |kn-1] +é(l-%8h,l)

=0 h=1,2, .. ., 8

OLT-d
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where n,1 is the Kronecker delta. Thus, if g = 50, for example,
dp = 0.02 and uy = 0.01, po, = 0.03, pz = 0.05, . « . Mgg = 0.99.

The fraction of neutrons scattered into du 1is % di. The fraction
that reaches the interface from the scattering center in subregion i
wit%out further collisions and with direction cosine l“hl is
“lg +1-1/ |y |- Thus,

a3

I
._1 .
q +1-1/[p
n(xg, |k |)du =_Z; n(1) due 1 /i uy > 0
1=
(B2)
I . 1
qu+l-i = [(q:L +1-1i) - E]ALI
Similarly,
q
R 6y T
n(xg, [yl das = nS(i) 5 du e uy <O
-
i=qq+ (53)

T _ 1
Yisg, = [(i - ) - E:IALII

Equation (B2) is the angular distribution entering the second slab
due to the flux in the first, and (B3) is the converse. It should be
noted that the angular distribution is not isotropic.

First-Collision Distribution in Second Slgb Due to Angular Distribution

Define 6% as the probability that a neutron with direction cosine
will pass through a single subregion of slab I without a collision.

I e_ALI/luhl

9!

(B4)
51T = o1/ iy

The quantity 1 - &, 1s the probability that a neutron with direction
cosine will collide within a single subregion.

The number scattered from the first collision in each subregion 1
of the second medium is therefore



32

&
n$(1) = (AVT 2 nCrgman(aEH 0t (1 - ofh)
s =1

1= q.+,9;42, - - ., q

From slab II into slab I,

g
w1 = (3) 2 n0o i a1 - o)

i=1,2, «. . ., q;

9 -1 Iy .
The factor (&) (1 - &;) gives the fraction of the

Ky >0

n(Xo;Hh)dH

(BS)

(Bs)

inter-

face neutrons that pass through ql - 1 subregions of medium I without

a collision and that collide in the next subregion.

OLT-d
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APPENDIX C

EVALUATION OF INTEGRALS FOR PROBABILITY OF TRANSMISSION
WITH NO COLLISION AND ONE COLLISION

The gquantity Pg is equivalent to equation (A3). Fo: the slab of

sketch (a), 1 = a/A = 1/A, since a has been chosen to be 1 centimeter;
Pg was arbitrarily chosen as 50.0/1000; A was determined so as to give

this value, and turned out to be approximately 0.78125 (ref. 5).

15% collision
point

Sketch (f)

To evaluate PE, consider sketch (f). Let PﬁR and P%R denote

the respective probabilities of a source neutron suffering its first
collision to the right or left of the origin and then escaping through
the right-hand boundary. Then

pl - pER | pLR (c1)

To evaluate P?R, for example, write the expression for the number

of neutrons per square centimeter per second (NT(QO,Ql,po,pl)dﬂo,dﬂl,dpo)

born into solid angle dQg, scattered into dQy at a radius pg from



the origin, and traveling the remaining distaace p1 to the right-hand

boundary without a subsequent collision.

If a total of N neutrons per

square centimeter per second are isotropically born from the source,

an dog A0
T _ 0 .-py/N 2P0 &1 5./
N-(20,01,00,01)8040 dpg = N = e 0/ N I © 01/

X
where dQ = - du da, Pg =

El) Py =

s

a—xl

_——)
Hy

anl p = cos £. By summing

wp all fg's, Qp's, and x,'s, PAY is obtained:

a 1 21 Xl
- = _ a-Xy
“O)\ - 7\
PRR ddndundx, ——— S dodyy 4 e 1
1 pdigdxy Tohs  hg et Ry

Similarly,
] -1 on

R i

P% = - dgdugdxy

Xl:—a “O:O Q,O:O

Integrating these expressions over

Nea [Aa
2
a
P?R T ING
0 0

Na fNa
_ 8% v -
PilR - 4?\7\sfo fo Wvodvy e 1+ vo/vy J

Integrals (C2) were evaluated
of double integrals and a value of

_ 34.786
PRR - 2L 10

0

1 an

1 e HO© 1 HIA
dhg | HQ doydpy 45
ul: O G,l:: O
Ays oy ard Xy gives
\
o - /vl ] e-l/vo
vadv, | —
0"l 1 —vm@l
> (C2)

on the IBM 653 by using the definition
X/%S equel to 0.8. The results are:

_ 12.31
nd B - g

OLT-d
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Thus, from equation (Cl),

PT _ 47.07
1 1000
The wvalues
T 50.0 T _ 47.07 _12.31

0~ To00° 1 1000 ° "1 T 1000

were to be checked by the Monte Carlo and numerical methods.

35
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APPENDIX D

NUMERICAL TREATMENT OF SLAB OF SKETCH (a)

The values of the constants (see p. 12) ere qQ =20, a =1 centimeter,
A = 0.78125, %/%S = 0.8, and SXO = 1 neutron per square centimeter per

second. Thus, AL = 0.1280. In evaluating tlLe transfer DProbabilities,
fifteen terms of the series in equations (A8) and (A9) were used, so
that extreme accuracy was obtained for AL = (.1280.

The accompanying block diagram summarizes the main points of the

illustrative slab calculation but omits the steps for obtaining PLR,

From né(i) = n®(i), the average flux in i was calculated by

equation (6).

OLT~-H
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NUMERICAL-METHOD BLOCK DIAGRAM

Calculate and store

Pn, Py T = 1,2, . . ., 19

0’ *r

¥
[set r=1 |

Increase r by 1 "J

Calculate
A Py

Y

P, to locations that

- Add (A/Ng) SXO
represent rth subregion to left and
right of source plane

Calculate total number transmitted
r = 10, L3 with no collisions as
ni(i) is now known T A &
2n =5, -2 _8 nS(1i
i=1

Increase K by 1

Increase i by 1

Calculate and store® A

Calculate total number transmitted with
exactly K collisions as

10 if: | S

=
il
]
<o)

PROGRAM STOP |

*Sixty locations are used for this purpose: 20 locations
accumulate the number of scattering hits in each subregion for
collisions, 20 to store the number from the previous coliision,
nﬁ(i), and 20 as the working area for n§+l(i).

o oot

]
—
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APPENDIX E

MONTE CARLO CALCULATION OF NEUTRON FLUX ~ND TRANSMISSION INTEGRALS

Sketch (g) shows one of the symmetrica. halves of the slab of sketch
(a). The purpcse of the Monte Carlo calculution was to obtain the total

MAg = 0.8
A = 0.78125

(K+l)St collision)
point

Origin and e XK, 1
typical
source

g XK

th @ollision point
4 ———

Sketech (g)

neutron flux and transmission integrals PS, P%, and P%R (whose values

are given by eq. (C3)) and to compare them vith the values and time taken
by the numerical method. The probabilities Pg, K=2,3, . . ., 13 were

also recorded and compared, though not anal:tically evaluated because of
the complexities. The fact that these mult:ple-scattering transmission
intesrals are so readily obtainable by Monte Carlo demonstrates the
utiiity of following individual neutron histories for thin slabs.

The complete slab was divided into 20 subregions, and the total
number of scattering hits (proportional to the average flux) was recorded
in each. 1In following individual histories, all collisions were treated
as scatterings by the well-known technique ¢f weighting the colliding
neutron by (1 - Za/Z) per collision. A neutron leaving the slab from
the KM collision was recorded in the Ty c<cr Tx lccation of the

machine, depending on the boundary through which it escaped.

N TarT



D=Ly

39

To achieve accurate results, 10,700 histories were followed. - By
averaging corresponding fluxes and transmissions 1n both halves, the
equivalent of 10,700 case histories in each half is obtained. A Monte
Carlo treatment of this slab involves the following:

(1) Choosing random numbers:

A pseudo random number Rn+ 1 was generated by taking Rn +1=pRn
where p = 9,677,214,091 and Rg = 6,250,739,481 and by retaining only
the right ten digits in the product. The extreme right digit always
ends with a 1, but nine-digit accuracy is more than sufficient. The 1
prevents degeneracy from occurring too quickly.

(2) Choosing direction of travel after isotropic scattering colli-
sion in laboratory system:

Because the direction of travel after an isotropic scattering colli-
sion is unrelated to any previous direction, the x-axis can always be
chosen as the fixed reference or initial direction. The scattering angle
thereby formed i1s denoted by £ and its cosine by u.

From sketch (h), the probability distribution function for a neutron
passing through the shaded area dA 1is

p(t)de = dA/4xn

It

L
> sin & dg

dA = 2% sin £ 4§
(direction after scattering)

— X, or initial
direction

€
The cumulative distribution function is Jg p(E')de’ and is set
equal to a random number Ry to give

cos £ =pnp=1-72R E1
1

IThe stendard deviation of Pg, for example, 1is
o =A/mp(1 - p) = Af10,700 Af0.05x0.95. Thus, in the Monte Carlo calcu-
50 0. 67450 _ 50.0+1.35
1000 ~ 10,700 1000

laticn, Pg = with 50-percent expectancy.
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Thus, to pick from an isotropic distribution in the laboratory system, a
random number is chosen, and equation (El) .s applied. Picking an
aximuthal angle is unnecessary for this sla’ problem.

(3) Picking distance of travel to next collision:

The probability distribution funetion Zor a neutron traveling a
distance p without a collision and then colliding in dp 1is

plp)dp = e-p/% %?. The cumulative distribu-ion function is ./Bp p(p')dp’,

and equating to a random number gives

p=-A1n (1 -R)) =-A1nR, (E2)

(4) From sketch (g), the penetration distance is}

e = gt ekt (E3)
where Xy 1is the X coordinate of the prerious or K™ collision.

The Monte Carlo problem was programmed according to the block
diagram given on the next page. After following 10,700 histories for
up tc 20 collisions per history, the total number of scattering hits

n®(i) in each subregion i was punched out in addition to the trans-
mission probabilities P, Bct, PRR, K = 0, , . . ., 19. Then, the

averazse flux In 1 was calculated by
(1) = n5(i)/(z 4 &Xx .0,700)
where AX 1s the thickness of subregion 1 in centimeters and 10,700

is the normalizing factor. The number of ncutrons transmitted was
also normalized to one scurce neutron by diriding by 10, 700.

N T=1T
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MONTE CARLO BLOCK DIAGRAM

—_— —T —_— — Start next history [ A
I Set K = 0
(coming off source)
| !
|

Pick new random

——————
Increase number, Ry
K byl L
Calculate
u=1- 2R

!

Choose another random
number, Ro

Neutron with weight
(1 - 2,/2)% nas

been transmitted
Pri§§e§ tobne§t L from KPR collision.
Cie ;§;OH Ky'%n-l Calculate Add this weight to
creasing y _ - T or Ty 1loca-
unit if less than Pg41 = ~MIn Ry K X
desired number of & t;oié dep;nding.on
whether is
K+1

collisions has

been studied. ?aiculate positive or
Otherwise, start NI S ChLy'Y negative.
next history. ¥ O

X !

Test whether |X is

| K+l' Outside
>|a| (outside slab) or 1 s1ab
<|a| (inside slab)

!
[fhside slag]
!

Locate subregion in which neutron
has collided. Add weight

(1 - Za/Z)K+l to corresponding

machine location. This is the
fraction of the one neutron that
started the history, and scattered
from the (K+1)5% collision.
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APPENDIX F

Pz SPHERICAL HARMONICS SCLUTION

The Pz approximation in the Legendre series expansion of the
transport flux,

F(x,p) & 2127, (x)py(n)

1
F,(x) =/ F(x,u) Py (p)dn

1

gives rise to four simultaneous differential =quations for the total
neutron flux Fo(x) when substituted into the transport equation (ref.
1). For isotropic scattering in the laboratory system and a distributed
constant isotropic source S, these equations are:

Fi(x) + bOFO(x) -8=0 h
Fo(x) + 2F5(x) + 3b Fy(x) = 0
e (F1)
2Fi(x) + 3F4(x) + 5byF,(x) = 0
SFé(x) + 70 Fo(x) = 0 p

The net neutron diffusion current is Fy(x), v<hile Fo(x) and Fz(x) are
higher order fluxes and currents; by 1is the nacroscopic total cross
section and bo the macroscopic absorption cross section. An identical
set of equations holds for another region, sas A, except that Sp

neutrons per cubic centimeter per second replaces S and the b's are
replaced by a's.

Consider sketch (i). As discussed in re’erence 1, the source plane
is treated as a vacuum region of width 2Xy, vhich is eventually

allowed to approach zero with 2xy8y approaciing 1 neutron per square
centimeter per second. Since region A is vac um, &g = a; = 0.

OLT-H
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Source
region

A
} Region B
Vacuum (1 Neutron/cc/sec-/ l.‘— Xgy —————" Vacuum
—c1 Xq f—
8y = 0 _/ | by = 0.2560
al = 0 | by = 1.280
|

Sketch (i). - Slab of sketeh (a) by spherical harmonics.

The solution of equations (Fl) for regions A and B is:

4 3
Bv|X|
F%(x) = Ay Fy = Z B,e
v=1
4
Byl x|
F%(x) = SAX + Al Fl = :E: v, B,
v=1
. > (F2)
By | x|
Fi(x) = 4, Fo = 2_:1 5,8,
5 By | x|
F%(x) = -(2/3) Spx + Az F; = :z: AB e
v=1 ~
where A and B are arbitrary constants. Also
Yz_EQ 5=5bobl_l N E_5bobl
Y T VoMY By
4 2 35 .2 28 . 35 3
BV - xlBV + Ny = O; % = Bbobl + ER bl + T bobl) Xo = —5—-bobl

(F3)
The boundary conditions are (ref. 6):

At x =0,
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>
Ly
o)

—
i
o

(Fa
F2(0) = 0 :
At X = Xq,
Fi(x,) = FB(x,) m=0,1,2,3 (F5)
At x = X5,
-1
JE F(x,,u)P (u)dn = 0
(Fe)
=0

'/O‘—l F(X2 )H)Pg(U)d%i

Equation (F4) is implied from the requirsment that no net flow of
neutrons occurs in any direction across the rlane of symmetry. Equation
(F5) expresses the continuity of the transport flux in any direction
across the interface, and (F6) is the set of boundary conditions proposed
by Marshek (in ref. 1) to approximate the rigorous boundary condition
that no neutrons reenter the slab from the vazuum; that is,

F(xo,p) = O,up < 0. In addition, the symmetry condition F(x,u) = F(-x,-u)

must be satisfied.

From eguation (F3),

. N
_ a1 c _
Ble,3,4° i/v/zz £3 W& A%, (F7)

From equation (F4),

Equation (F7) implies

Py = -Fy Py = Bs Tp = 7y Ag = =N

&

]
(o)

8,

Boundary conditions (FS) and (F6) lead t> the following set of
equations for the arbitrary constants:

0LT-d
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4
B, |x h
Z B e v 1 - ag
v=1
4
Z YVBVeBV‘XlI = SpXy
v=1
4
Z z51/]3\/eBV|XlI = Ap
v=1
> (¥9)
5v|xl| 2

7\VBVe = - 3- SAXl
v=1

(4 + 55, - 8r,)Be” el
v=1
4
Z (1L - 58, + BAV)BVeBVlxgl =0

<
il
=

Equations (F9) were solved for Ay, A,, By, By, Bz, and B, in terms of
the other known quantities. 1In the process, eB |Xl| was approximated
by 1+ B\Xl|, since the latter is the asymptotic expression approached
as Xy - 0. The limit was taken as Xq > 0 to give ZXlSA = 1. The
constants Ay and A, were eliminated, and B;, B,, Bz, and By were

finally solved in terms of by and by and then substituted back into
(F2). The values are:

B, = -0.00376652 B; = -0.0694369

3

B

i

o 0.932218 By = 1.399507
The total flux Fp(x) was plotted against x (fig. 2), and the

total number of absorptions and leakage from the slab were computed and
compared with the values obtained by the numerical and Monte Carlo
methods.
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TABLE II. - MONTE CARLO RESULTS FOR SLAB OF SKETCE (a) FOR 10,700 HISTORIES®

() Fluxes

[Origin taken at XO:_]

*Total leskage/sec = 0.43408 /source neutron; total absor ption/sec = 0.56569/source

(as computed from

Subregion 1 2 3 4 5 5 7 8 9 10
- Side of origin |2.438 |1.686 {1.414 |1.201 {0.9880 | 0.8850 | 0.7427 |0.6070 |0.5084 | 0.3968
+ Side of origin {2.521 | 1.798 |1.419 |1.242 | 1.072 .9065 L7457 .5941 .5293 L4212
Average 2.480 {1.741 |1.417 |1.222 | 1.020 .8959 L7442 .6005 .5192 .4090

(b) Transmissions (per thousand soirce neutrons)

K | PEx10® | peTxao® Averzze,
per thousand scurce neutrons
01 50.47 49.53 50.(0
1 48.87 te7.61
2 35.47 35.t6
3 24.74 5.70
4 18.37 18.¢5
5 13.32 12.¢9
8 8.43 9.(0
7 5.27 5.50
8 4.28 4.(6
9 2.99 2.°0
10 1.72 1.93 1.¢2
11] 1.12 . 939 1.(3
1z 770 L7139 .45
13 .493 .478 LB
14 374 .345 L2650
15 230 217 24
16 186 .184 185
17 071 L1006 (88
13 071 .063 70
13 L0587 . 048 (52

10

1=1

tr
P = 11.97/1000.

23 B(L)Zy AX).

neutron

Nl T-
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TABLE ITII. - NUMERICAL RESULTS FOR TWO-REGION UNSYMMETRICAL SIAB
Transmissions Flux
K P%?Xlo4 nglo4 Subregion| Successive-collision | Simultaneous-equation
solution solution
Region I

0 | 5000.00 88.607 1 2.1686 2.1686
1 989.93 96.626 2 1.5337 1.5337
2 401.50 |93.172 3 1.3058 1.3059
3 200.73 81.131 4 1.1601 1.1801
4 | 112.27 66.091 S 1.0522 1.0522
5 67.200 |51.467 6 .9663 .9663
6 42.061 [ 38.847 7 .8947 .8947
7 27.149 [28.684 8 .8334 .8334
8 17.910 |20.851 9 L7797 L7797
9 12.002 |14.989 10 L7319 L7319
10 8.135 |10.689 11 .6889 .6889
11 5.559 7.578 12 .6498 .6498
12 3.822 5.351 13 .6140 .6140
13 2.839 | 3.767 14 .5811 .5811
14 1.828 2.646 15 .5506 .5508
15 1.269 1.856 16 .5223 .b223
18 .8826| 1.300 17 .4959 L4959
17 .6146 .9100 18 4712 L4712
18 .4283 L6366 19 .4481 .4481
19 .2986 L4451 20 L4263 L4263
20 .2083 L3111 21 .4058 .4058
21 .1454 2175 22 .3865 . 3865
22 .1015 .1520 23 . 3683 .3683
23 .0709 .1062 24 L3511 L3511
24 .0495 .0742 25 .3348 .3348
25 .0346 .0518 26 3193 .3193
26 .0241 .0362 27 L3047 .3047
27 0162 .0253 28 .2909 .2909
28 .0118 L0177 29 .2778 .2778
30 .2655 .2655

31 .2539 L2539

32 . 2430 .2430

33 .2330 .2330

34 .2242 .2242

Reglon IT

35 0.2176 0.2176

36 .2089 .2089

37 .1992 .1992

38 .1888 .1888

39 .1780 1781

40 .1668 .1668

41 L1551 L1551

42 .1428 .1428

43 .1297 L1297

44 .1150 .1150
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TABLE IV.

- MONTE CARLC RESULTS FCOR TWO-REGION

UNSYMMETRICAL SIAB (25,000 I'ISTORIES)

Transmissions Flux

K | pgbxao* | ppxaot Subiegion| Results

Region T
0 5088.40 85.200 1 2.0935
1 976.320 96.160 2 1.4811
2 382.992 92.080 3 1.3003
3 190.118 78.928 4 1.1233
4 107.404 68.326 S 1.0222
S 69.601 46.64%2 6 . 9665
6 44,012 38.743 7 .8733
7 29.416 27.141 8 . 8096
8 17.702 20.134 9 . 7981
9 12.614 14.028 10 L7671
10 8.228 10.232 11 . 7166
11 5.784 8.857 12 6441
12 4.009 5.018 13 .5930
13 2.429 3.975 14 .5452
14 1.617 2.293 15 .5042
15 1.014 1.947 16 L5142
16 L9172 . 9563 17 .4909
17 4454 .7925 18 .4383
18 4675 .4472 19 4172
19 L3435 L4270 20 .4530
20 .25b2 .2319 2l .3996
21 .2036 4757 22 .3864
22 .0593 .1833 23 . 3354
23 .0683 L1395 24 L3418
24 .0599 . 0955 25 .3189
25 .0427 .0310 26 .3245
26 L0304 .0399 27 .3z212
27 .0104 .0448 28 L2792
28 .0055 .0116 29 .2876
30 2717
31 .2591
32 .2505
33 L2366
34 .2260

Region ITI
35 0.1953
36 .1947
37 .1902
38 .1893
39 .1906
10 .1581
41 L1341
42 1333
13 .1430
44 .1049

OLT-d&
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Total flux, p(x)
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2.8
2.4
Method
_ Monte Carlo (average)
Numerical (20 subdivisions)
2.0
1.6
ﬂ
1.2 S
——
.8
.4
:
Q
@
o
0 .2 .4 .6 .8 1.0
Coordinate, x, cm
Figure 1. - Comparison of Monte Carlo and numerical-method solutions.

Total mean free path, A, 0.78125 centimeter per collision; scattering

probability, x/%s, 0.8.
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Total flux, o(x)

3.6
o
3.2
2.8
O Method
- P
2.4 1
Ps
O
o) Numerical (100
A subdivisions)
\\o
2-0 \
1.6l N] O
N O
~ :\
NEA
\OQ\
1.2 =
N2>
5
S¢
(0]
20) N
8 NE
I
R
\
= <
\ §
4 =) g
o
=
0 .2 s .6 .8 1.0
Coordinate, x, cm
Figure 2. - Comparison of Pl’ Pz, and 100- s ubregion-numerical-

method solutions. Total mean free path, \, 0.78125 centimeter
per collision; scattering probability, 7\/\(1, 0.8.
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“Total flux, o(x)

2.8 -
Numerical method
—_—— Diffusion theory
2.4
2.0
1.6
l.2
[ dNn
e
T~
\- — -
—— 4
S—
.8
.4
2
[}
o
=
0 1/25 2/25 3/25 4/25 5/25
Mean free path, A
Figure 3. - Numerical and diffusion-theory curves

for symmetrical slab of 1/5 mean free path half-
thickness. Total mean free path, A, 0.78125
centimeter per collision; scattering probability,
MAgs 0.8.
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Total flux, o(x)

[ne]

slab of 5 mean free paths half-thicness.
A, 0.78l25 centimeter per collision; scattering probability,

Mgy 0.8.

. 8 L
O
4
Diffusion theory
& ~Numerical method
o] e
\o
6 —
2 i‘ -—
"0\
. O\
O
O
o
C%)
° 5
.4 o 5 -—
@)
3
h}\ ~
0 1 2 Z 4 5
Mean free paths, A
Figure 4. - Numerical and diffusion-tieory curves for symmetrical

Total mean free path,

AT -



55

‘worqoad qBIS-2TQNOp TEOTJ432wwdsun JOJ XnTJ OTJB) d3U0K PUB XNTJ POYISUW-TEDTJISUWNN - °§ 2anBTA

uoiFaaqng
¥y oY 9% (A 8 ¥c o< 9T IS 3 ¥ 0
T T 1
wd 99.L10"a €Lo 2
5 S ooalg o .
c ,Ulo..DlO.
| § S-olg
e -]
= — v
tanell= L]
'y <3urTd soanos
f._u otdoaszosy 3iun
\OWwl 9*

R

) S
. X X r
o'l = AAV g0 = A'\A.V
II I
o = ¥ 0T = L\
SR AR 11 I

(s2T1048TY 000°‘G2)
O0TaR) 23UO0Y a P
poysaw TeoTJIawnN o M
] »

WnNnoeA

(x)m ‘xnTJ 1R10L

E-170

NASA - Langley Field, Va.



"



